Home
Class 12
MATHS
inttan^(-1)xdx=….+C...

`inttan^(-1)xdx=….+C`

A

`xtan^(-1)x+1/2logabs(1+x^(2))+c`

B

`xtanA^(-1)x-1/2logabs(1+x^(2))+c`

C

`(x-1)tan^(-1)x+c`

D

`xtan^(-1)-logabs(1+x^(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int tan^(-1)xdx

intsin^(-1)xdx

intsin^(-1)xdx

intsec^(-1)xdx=

int cot^(-1)xdx

intcos^(-1)xdx=

Evaluate : intxtan^(-1)xdx

if int x tan^(-1)xdx=u tan^(-1)x-(x)/(2)+c then u=

inttan(sin^(-1)x)dx=

inttan^2(2x-3)dx