Home
Class 12
MATHS
If I=inttan^(-1)((2x)/(1-x^(2)))dx, " th...

If `I=inttan^(-1)((2x)/(1-x^(2)))dx, " then ", I-2x tan^(-1)x=`

A

`log(1+x^(2))+c`

B

`log((2x)/(1-x^(2)))+c`

C

`-log(1+x^(2))+c`

D

`-log(1-x^(2))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

int(x^(2)tan^(-1)x)/(1+x^(2))dx

inttan^-1(x/sqrt(1+x^2))dx

I=int((tan^(-1)x)^(-3/2))/(1+x^(2))dx

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

If I=int(x^2+1dx)/(sqrt(1+x^(2))

I=int_(-1)^(1)log((2-x)/(2+x))dx