Home
Class 12
MATHS
inte^(x)(1+tanx+tan^(2)x)dx=...

`inte^(x)(1+tanx+tan^(2)x)dx=`

A

`e^(x)sinx+c`

B

`e^(x)cosx+c`

C

`e^(x)tanx+c`

D

`e^(x)secx+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

int(1)/(1+tan ^(2)x)dx

int(2tanx)/(2+3tan^(2)x)dx=

inte^(x)tanx(1+tanx)dx=

int(2tan x)/(1+tan^(2)x)dx

int((1-tanx)/(1+tanx))^(2)dx=

int((1+tan)/(1-tanx))^(2)dx=

e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)

int(secx tanx)/(9-16 tan^2x)dx=