Home
Class 12
MATHS
int e^(x)((x^(2)+1))/((x+1)^(2))dx is eq...

`int e^(x)((x^(2)+1))/((x+1)^(2))dx` is equal to

A

`e^(x)((x-1)/(x+1))+c`

B

`e^(x)((x+1)/(x-1))+c`

C

`e^(x)(x+1)(x-1)+c`

D

`e^(x)/(x+1)^(2)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int e^(x) ((1+ x^(2)))/((1+x)^(2))dx

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

int(e^(x)(1-x)^(2))/((1+x)^(2))dx

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

int(x e^(x))/((1+x)^(2)) dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

int((x^(2)+1)e^(x))/((x+1)^(2))dx

int((x^(2)+1)e^(x))/((x+1)^(2))dx

int((x^(2)+1)e^(x))/((x+1)^(2))dx

(2) int(1)/(e^(x)+e^(-x))dx is equal to