Home
Class 12
MATHS
intlogx(logx+2)dx=...

`intlogx(logx+2)dx=`

A

`x(logx)^(2)+c`

B

`x(1+logx)^(2)+c`

C

`x[1+(logx)^(2)]+c`

D

`x(1+logx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \log x (\log x + 2) \, dx \), we can break it down into simpler parts. Let's go through the steps: ### Step 1: Expand the Integral First, we can expand the integrand: \[ \int \log x (\log x + 2) \, dx = \int (\log^2 x + 2 \log x) \, dx \] ### Step 2: Separate the Integral Now, we can separate the integral into two parts: \[ \int \log^2 x \, dx + 2 \int \log x \, dx \] ### Step 3: Solve \( \int \log x \, dx \) To solve \( \int \log x \, dx \), we can use integration by parts. Let: - \( u = \log x \) → \( du = \frac{1}{x} \, dx \) - \( dv = dx \) → \( v = x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - x + C \] ### Step 4: Solve \( \int \log^2 x \, dx \) For \( \int \log^2 x \, dx \), we again use integration by parts: Let: - \( u = \log^2 x \) → \( du = 2 \log x \cdot \frac{1}{x} \, dx \) - \( dv = dx \) → \( v = x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int \log^2 x \, dx = x \log^2 x - \int x \cdot 2 \log x \cdot \frac{1}{x} \, dx = x \log^2 x - 2 \int \log x \, dx \] ### Step 5: Substitute Back Now, we substitute \( \int \log x \, dx \) back into our equation: \[ \int \log^2 x \, dx = x \log^2 x - 2(x \log x - x) = x \log^2 x - 2x \log x + 2x \] ### Step 6: Combine the Results Now we combine the results: \[ \int \log x (\log x + 2) \, dx = \left( x \log^2 x - 2x \log x + 2x \right) + 2\left( x \log x - x \right) \] \[ = x \log^2 x - 2x \log x + 2x + 2x \log x - 2x \] \[ = x \log^2 x + 0 \] ### Final Answer Thus, the final result is: \[ \int \log x (\log x + 2) \, dx = x \log^2 x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate intlogx/(1+logx)^2dx

intlogx/(1+logx)^2dx= (A) 1/(1+logx)+c (B) x/(1+logx)+c (C) loglog(1+logx)+c (D) none of these

intlogx/(x+1)^2dx

int(logx)^(2)dx=?

int(logx)/(x^(2))dx=?

int7^(x logx)(1+logx)dx=

int[f(logx)+f'(logx)]dx=

int[f(logx)+f'(logx)]dx=

int(1)/(xlogx(2+logx))dx=