Home
Class 12
MATHS
int{log(logx)+(1)/((logx)^(2))}dx=x {f (...

`int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C`, then

A

`f(x)=log(logx), g(x)=1/logx`

B

`f(x)=logx, g(x)=1/logx`

C

`f(x)=1/logx, g(x)=log(logx)`

D

`f(x)=1/(xlogx),g(x)=1/logx`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

(1)/(logx)-(1)/((log x)^(2))

int(log(logx))/(x.logx)dx=

int(log(x//e))/((logx)^(2))dx=

int1/(x(1-logx)^(2))dx=

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(1)/(x(logx))dx=?

int(logx)/(x(1+logx)(2+logx))dx=

If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c , then (A) f(x)=x (B) f(x)=x^2 (C) g(x)=logx (D) g(x)=(logx)^2

int(logx)/(x^(2))dx=?