Home
Class 12
MATHS
intx^(2)/((x^(2)+2)(x^(2)+3))dx=...

`intx^(2)/((x^(2)+2)(x^(2)+3))dx=`

A

`-sqrt(2)tan^(-1)x+sqrt(3)tan^(-1)x+c`

B

`-sqrt(2)tan^(-1)(x/sqrt(2))+sqrt(3)tan^(-1)(x/sqrt(3))+c`

C

`sqrt(2)tan^(-1)(x/sqrt(2))+sqrt(3)tan^(-1)(x/sqrt(3))+c`

D

`sqrt(2)tan^(-1)x+sqrt(3)tan^(-1)x+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

intx^(5).e^(x^(2))dx=

intx/(3-x^(2))dx

intx^(2)(1-(2)/(x))^(2)dx=

intx^4/(1+x^2)dx

intxe^(x^(2)log2)e^(x^(2))dx="________"+c

intx^(4)/((x-1)(x^(2)+1))dx=

intx^3/(1+x^2)^2dx

Evaluate: intx^2/((1+x^3)(2+x^3))dx

intx/((x-1)^2(x+2))dx

intx^(2)/sqrt(x^(3)+1)dx