Home
Class 12
MATHS
int(dx)/(e^(x)+1-2e^(-x))=...

`int(dx)/(e^(x)+1-2e^(-x))=`

A

`logabs(e^(x)-1)-logabs(e^(x)+2)+c`

B

`1/2logabs(e^(x)-1)-1/3logabs(e^(x)+2)+c`

C

`1/3logabs(e^(x)-1)-1/3logabs(e^(x)+2)+c`

D

`1/3logabs(e^(x)-1)+1/3logabs(e^(x)+2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{e^x + 1 - 2e^{-x}}, \] we can follow these steps: ### Step 1: Simplify the Denominator First, we rewrite the denominator: \[ e^x + 1 - 2e^{-x} = e^x + 1 - \frac{2}{e^x} = \frac{e^{2x} + e^x - 2}{e^x}. \] Thus, we can rewrite the integral as: \[ I = \int \frac{e^x \, dx}{e^{2x} + e^x - 2}. \] ### Step 2: Substitute \( t = e^x \) Let \( t = e^x \). Then, \( dx = \frac{dt}{t} \). Substituting this into the integral gives: \[ I = \int \frac{t \cdot \frac{dt}{t}}{t^2 + t - 2} = \int \frac{dt}{t^2 + t - 2}. \] ### Step 3: Factor the Denominator Next, we factor the quadratic expression in the denominator: \[ t^2 + t - 2 = (t + 2)(t - 1). \] Thus, we can rewrite the integral as: \[ I = \int \frac{dt}{(t + 2)(t - 1)}. \] ### Step 4: Partial Fraction Decomposition Now, we perform partial fraction decomposition: \[ \frac{1}{(t + 2)(t - 1)} = \frac{A}{t + 2} + \frac{B}{t - 1}. \] Multiplying through by the denominator \((t + 2)(t - 1)\) gives: \[ 1 = A(t - 1) + B(t + 2). \] Expanding and rearranging gives: \[ 1 = (A + B)t + (2B - A). \] Setting up the system of equations: 1. \( A + B = 0 \) 2. \( 2B - A = 1 \) From the first equation, we have \( B = -A \). Substituting into the second equation gives: \[ 2(-A) - A = 1 \implies -3A = 1 \implies A = -\frac{1}{3}, \quad B = \frac{1}{3}. \] Thus, we have: \[ \frac{1}{(t + 2)(t - 1)} = -\frac{1}{3(t + 2)} + \frac{1}{3(t - 1)}. \] ### Step 5: Integrate Now we can integrate: \[ I = \int \left(-\frac{1}{3(t + 2)} + \frac{1}{3(t - 1)}\right) dt = -\frac{1}{3} \ln |t + 2| + \frac{1}{3} \ln |t - 1| + C. \] ### Step 6: Substitute Back Substituting back \( t = e^x \): \[ I = -\frac{1}{3} \ln |e^x + 2| + \frac{1}{3} \ln |e^x - 1| + C. \] ### Final Answer Thus, the final result is: \[ I = \frac{1}{3} \ln \left| \frac{e^x - 1}{e^x + 2} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(3e^(x)+2e^(-x))dx=

STATEMENT-1 : int(dx)/(e^(x)+e^(-x)+2)=-(1)/(e^(x)+1)+c and STATEMENT-2 : int(d(f(x)))/((f(x))^(2))=-(1)/(f(x))+c

int(dx)/(e^(x)+e^(2x))

int(dx)/(e^(x)(e^(x)+1)^(2))

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(e^(x)dx)/(e^(x)-1)

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int(1)/((e^(x)+e^(-x))^(2))dx

int(1)/((e^(x)+e^(-x))^(2))dx=