Home
Class 12
MATHS
If int(1)/(f(x))dx=log[f(x)]^(2)+c, then...

If `int(1)/(f(x))dx=log[f(x)]^(2)+c`, then `f(x)=`

A

`2x+alpha`

B

`x/2+alpha`

C

`x+alpha`

D

`x^(2)+alpha`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

if int(dx)/(f(x))=log(f(x))^(2)+C then

if int(dx)/(f(x))=log(f(x))^(2)+C then

int(f'(x))/(f(x))dx=log f(x)+c

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?

If int(1)/(sin(x-a)cos(x-a))dx=log[f(x)]+c , then f(x)=

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

int(f'(x))/(f(x)log{f(x)})dx=

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=