Home
Class 12
MATHS
int1/(cosx(1+cosx))dx=...

`int1/(cosx(1+cosx))dx=`

A

`logabs(secx+tanx)+2tan""x/2+c`

B

`logabs(secx+tanx)-2tan""x/2+c`

C

`logabs(secx+tanx)+tan""x/2+c`

D

`logabs(secx+tanx)-tan""x/2+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\cos x (1 + \cos x)} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand as: \[ \frac{1}{\cos x (1 + \cos x)} = \frac{1}{\cos x} \cdot \frac{1}{1 + \cos x} \] This allows us to separate the integral: \[ \int \frac{1}{\cos x (1 + \cos x)} \, dx = \int \frac{1}{\cos x} \cdot \frac{1}{1 + \cos x} \, dx \] ### Step 2: Use the identity for \(1 + \cos x\) We know that: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral: \[ \int \frac{1}{\cos x (1 + \cos x)} \, dx = \int \frac{1}{\cos x \cdot 2 \cos^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \frac{1}{\cos x \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 3: Use the identity for \(\cos x\) We also know that: \[ \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \] Thus: \[ \frac{1}{\cos x} = \frac{1}{2 \cos^2\left(\frac{x}{2}\right) - 1} \] Now we can substitute this back into our integral: \[ \frac{1}{2} \int \frac{1}{(2 \cos^2\left(\frac{x}{2}\right) - 1) \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 4: Substitute \(u = \tan\left(\frac{x}{2}\right)\) We can use the Weierstrass substitution: \[ \cos x = \frac{1 - u^2}{1 + u^2}, \quad dx = \frac{2}{1 + u^2} \, du \] Substituting these into the integral gives: \[ \frac{1}{2} \int \frac{1 + u^2}{(1 - u^2)(1 + u^2)^2} \cdot \frac{2}{1 + u^2} \, du = \int \frac{1}{(1 - u^2)(1 + u^2)} \, du \] ### Step 5: Partial Fraction Decomposition Now we can perform partial fraction decomposition: \[ \frac{1}{(1 - u^2)(1 + u^2)} = \frac{A}{1 - u^2} + \frac{B}{1 + u^2} \] Solving for \(A\) and \(B\) gives: \[ 1 = A(1 + u^2) + B(1 - u^2) \] Setting \(u = 1\) and \(u = -1\) allows us to solve for \(A\) and \(B\). ### Step 6: Integrate After finding \(A\) and \(B\), we can integrate each term separately: \[ \int \frac{A}{1 - u^2} \, du + \int \frac{B}{1 + u^2} \, du \] ### Step 7: Back Substitute Finally, we will back substitute \(u = \tan\left(\frac{x}{2}\right)\) to express our answer in terms of \(x\). ### Final Answer The final result will be: \[ \int \frac{1}{\cos x (1 + \cos x)} \, dx = \text{(result from integration)} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(cosx)/(1-cosx)dx=

int(cosx)/(1+cosx)dx=

int(cosx)/((1+cosx))dx=?

intsinx/(cosx(1+cosx))dx

int(dx)/(cosx(1-cosx))=

Evaluate the following integrals: (i) int((1-cosx)/(1+cosx))dx (ii) int((1+cosx)/(1-cosx))dx

int 1/(sinx(1+2cosx)) dx

int(cosx-1)/(cosx+1)dx=

int(sinx)/((1+cosx))dx

Evaluate int(1-cosx)/(1+cosx)dx .