Home
Class 12
MATHS
The value of int(e^(6logx)-e^(5logx))/(e...

The value of `int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx` is equal to

A

`x^(3)/3+c`

B

`1/x+c`

C

0

D

`3/x^(3)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx=

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

inte^(-logx)dx is equal to

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

e^(x+2logx)

int(1+logx)/(x(2+log x)(3+logx))dx

int(logx)/(x(1+logx)(2+logx))dx=

The value of int cos (logx)dx is