Home
Class 12
MATHS
For n ge 2, " if " I(n)=intsec^(n)xdx, "...

For `n ge 2, " if " I_(n)=intsec^(n)xdx, " then " I_(4)-2/3I_(2)=`

A

`sec^(2)xtanx+C`

B

`1/3sec^(2)x tanx + C`

C

`2/3sec^(2)xtanx+C`

D

`1/3logabs(secc+tanx)+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

I_(n)=int sin^(n)xdx

If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=

If I_(n) int_(0)^(4) x dx then what is I_(n) + I_(n-2) equal to ?

If I_(n)=int_(0)^( pi/2)x^(n)sin xdx, then {I_(4)+12I_(2)} is equal to (i) 3 pi( ii) 3((pi)/(2))^(3)( iii) ((pi)/(2))^(2) (iv) 4((pi)/(2))^(3)

If I_(n)=int sin^(n)x backslash dx, then nI_(n)-(n-1)I_(n-2) equals

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n)=int_(0)^(pi/4)tan^(n)xdx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6) ...... are in

If I_(n)=int(x^(n))/(1+x^(2))dx, where n in N , then : I_(n+2)+I_(n)=