Home
Class 12
MATHS
intx^(2)secx^(3)dx=...

`intx^(2)secx^(3)dx=`

A

`log(secx^(3)+tanx^(3))+c`

B

`3(secx^(3)+tanx^(3))+c`

C

`1/3log(secx^(3)+tanx^(3))+c`

D

`log(secx+tanx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 \sec(x^3) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^3 \). Then, differentiate both sides to find \( dx \): \[ dt = 3x^2 \, dx \implies dx = \frac{dt}{3x^2} \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral gives: \[ \int x^2 \sec(x^3) \, dx = \int x^2 \sec(t) \cdot \frac{dt}{3x^2} \] The \( x^2 \) terms cancel out: \[ = \frac{1}{3} \int \sec(t) \, dt \] ### Step 3: Integrate Secant The integral of \( \sec(t) \) is a standard result: \[ \int \sec(t) \, dt = \ln |\sec(t) + \tan(t)| + C \] Thus, we have: \[ \frac{1}{3} \int \sec(t) \, dt = \frac{1}{3} \left( \ln |\sec(t) + \tan(t)| + C \right) \] ### Step 4: Substitute Back Now substitute \( t = x^3 \) back into the expression: \[ = \frac{1}{3} \ln |\sec(x^3) + \tan(x^3)| + C \] ### Final Answer Thus, the final solution is: \[ \int x^2 \sec(x^3) \, dx = \frac{1}{3} \ln |\sec(x^3) + \tan(x^3)| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

intx^(2)sinx^(3)dx=?

intx^(2)*sin x^(3)dx

intx^2secx^3dx

Evaluate the following integrals: intx^(2)e^(3x)dx

intx^(3)cosx^(2)dx=?

intx^(3)sin(x^(4))dx

Evalutate intx^(3)sinx^(4)dx.

intx^(2)/sqrt(x^(3)+1)dx

intx^(2) . sin x^(3) dx

intx^3(1+x^2)^(1/3)dx