Home
Class 12
MATHS
The primitive of 1/(4sqrt(x)+x) w.r.t.x ...

The primitive of `1/(4sqrt(x)+x)` w.r.t.x is

A

`1/2log(sqrt(x)+4)+c`

B

`2log(sqrt(x)+4)+c`

C

`log(sqrt(x)+4)+c`

D

`1/4log(sqrt(x)+4)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To find the primitive (or integral) of the function \( \frac{1}{4\sqrt{x} + x} \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{4\sqrt{x} + x} \, dx \] ### Step 2: Factor out \( \sqrt{x} \) Notice that we can factor out \( \sqrt{x} \) from the denominator: \[ 4\sqrt{x} + x = \sqrt{x}(4 + \sqrt{x}) \] Thus, we can rewrite the integral as: \[ I = \int \frac{1}{\sqrt{x}(4 + \sqrt{x})} \, dx \] ### Step 3: Substitute \( u = \sqrt{x} \) Let \( u = \sqrt{x} \). Then, \( x = u^2 \) and \( dx = 2u \, du \). Substituting these into the integral gives: \[ I = \int \frac{1}{u(4 + u)} \cdot 2u \, du = 2 \int \frac{1}{4 + u} \, du \] ### Step 4: Integrate Now we can integrate: \[ I = 2 \int \frac{1}{4 + u} \, du = 2 \cdot \ln |4 + u| + C \] where \( C \) is the constant of integration. ### Step 5: Substitute Back Now we substitute back \( u = \sqrt{x} \): \[ I = 2 \ln |4 + \sqrt{x}| + C \] ### Final Answer Thus, the primitive of \( \frac{1}{4\sqrt{x} + x} \) with respect to \( x \) is: \[ I = 2 \ln |4 + \sqrt{x}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Let F(x) be the primitive of (3x+2)/(sqrt(x-9))w.r.t.x. .If F(10)=60 then the value of F(13)

Derivative of log (x+sqrt(x^(2)-1)) w.r.t.x is

Find the derivative of sqrt(4-x) w.r.t.x using the first principle.

Find derivative of sin^(-1)sqrt(x) w.r.t.x by first principle

Find derivative of cos(sqrt(x)) w.r.t.to x

Let f(x)=sin^(3)x+sin^(3)(x+(2 pi)/(3))+sin^(3)(x+(4 pi)/(3)) then the primitive of f(x)w.r.t.x is

Find derivative of sec (tan(sqrt(x))) w.r.t.to x

Derivative of cos^(-1)sqrt(x)w.r.t.sqrt(1-x) is

Derivative of log(x+sqrt(x^(2)+a^(2)))w.r.t.x is