Home
Class 12
MATHS
The value of int("cosec x")/(cos^(2)(1+l...

The value of `int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx` is

A

`sin^(2)(1+logtan""x/2)+c`

B

`tan(1+logtan""x/2)+c`

C

`sec^(2)(1+logtan""x/2)+c`

D

`-tan(1+logtan""x/2)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int("cosec" x)/(cos^(2)(1+log tan.(x)/(2)))dx=

int("cosec x")/(cos^(2)(1+log tan.(x)/(2)))dx is equal to

Evaluate :int(1-cos x)csc^(2)xdx

int(1+cos 2x)/(1-cos 2x)dx

int(sec x)/(1+csc x)dx

int("cosec"^(2)(logx))/(x)dx

The value of int(x^(2)+cos^(2)x)/(1+x^(2))"cosec"^(2)x dx is equal to:

int (sec^(2)x)/(cosec^(2)x) dx

the value of int(cos^(2)x)/(1+a^(x))dx,a>0