Home
Class 12
MATHS
int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))...

`int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx=`

A

`1/4cos[tan^(-1)(x^(4))]+c`

B

`1/4sin[tan^(-1)(x^(4))]+c`

C

`(-1)/4cos[tan^(-1)(x^(4))]+c`

D

`1/4sec[tan^(-1)(x^(4))]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^3 \sin(\tan^{-1}(x^4))}{1+x^8} \, dx, \] we will use substitution and integration techniques. ### Step 1: Substitution Let \( u = \tan^{-1}(x^4) \). Then, we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = \frac{1}{1 + (x^4)^2} \cdot 4x^3 = \frac{4x^3}{1 + x^8}. \] This implies that \[ du = \frac{4x^3}{1 + x^8} \, dx \quad \Rightarrow \quad dx = \frac{1 + x^8}{4x^3} \, du. \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( u \): \[ \int \frac{x^3 \sin(u)}{1+x^8} \cdot \frac{1 + x^8}{4x^3} \, du = \int \frac{\sin(u)}{4} \, du. \] ### Step 3: Integrate Now we can integrate: \[ \int \frac{\sin(u)}{4} \, du = \frac{1}{4} \int \sin(u) \, du = -\frac{1}{4} \cos(u) + C. \] ### Step 4: Substitute Back Now substitute back \( u = \tan^{-1}(x^4) \): \[ -\frac{1}{4} \cos(\tan^{-1}(x^4)) + C. \] ### Step 5: Simplify \( \cos(\tan^{-1}(x^4)) \) Recall that if \( u = \tan^{-1}(x^4) \), then \( \tan(u) = x^4 \). We can use the identity: \[ \cos(u) = \frac{1}{\sqrt{1 + \tan^2(u)}} = \frac{1}{\sqrt{1 + (x^4)^2}} = \frac{1}{\sqrt{1 + x^8}}. \] Thus, our final answer is: \[ -\frac{1}{4} \cdot \frac{1}{\sqrt{1 + x^8}} + C. \] ### Final Answer \[ \int \frac{x^3 \sin(\tan^{-1}(x^4))}{1+x^8} \, dx = -\frac{1}{4\sqrt{1 + x^8}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)[tan^(-1)(x^(4))]^(2))/(1+x^(8))dx=

int(x tan^(-1)x^(2))/(1+x^(4))dx

int x^(3)(tan^(-1)x)dx

int(cos(tan^(-1)x)+sin(tan^(-1)x))/(1+x^(2))dx=

int x^(3)sin(x^(4)+1)dx

int (sin (2tan^(-1)x))/((1+x^(2)))dx.

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: (i) int(cos sqrt(x))/(sqrt(x))dx (ii) int((sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: ( i int(4(sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx (ii) int(log((tan x)/(2)))/(sin x)dx

int(sin^(-1)(3x-4x^(3))dx)