Home
Class 12
MATHS
int1/(1+e^(x))dx is equal to...

`int1/(1+e^(x))dx` is equal to

A

`log_(e)((e^(x)+1)/e^(x))+c`

B

`log_(e)((e^(x)-1)/e^(x))+c`

C

`log_(e)(e^(x)/(e^(x)+1))+c`

D

`log_(e)(e^(x)/(e^(x)-1))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{1 + e^x} \, dx \), we can follow these steps: ### Step 1: Set up the integral Let \( I = \int \frac{1}{1 + e^x} \, dx \). ### Step 2: Rewrite the integral We can rewrite the integrand by factoring out \( e^x \): \[ I = \int \frac{1}{1 + e^x} \, dx = \int \frac{e^{-x}}{e^{-x} + 1} \, dx \] ### Step 3: Substitution Let \( u = 1 + e^{-x} \). Then, differentiate \( u \): \[ du = -e^{-x} \, dx \quad \Rightarrow \quad dx = -\frac{du}{e^{-x}} = -\frac{du}{u - 1} \] ### Step 4: Substitute in the integral Now, substituting \( u \) into the integral: \[ I = \int \frac{-1}{u} \, du = -\ln |u| + C \] ### Step 5: Back-substitute \( u \) Substituting back for \( u \): \[ I = -\ln |1 + e^{-x}| + C \] ### Step 6: Simplify the expression We can simplify the expression further: \[ I = \ln |1 + e^{-x}|^{-1} + C = \ln \left( \frac{1}{1 + e^{-x}} \right) + C \] ### Step 7: Final simplification Using the property of logarithms: \[ I = \ln \left( \frac{e^x}{e^x + 1} \right) + C \] ### Final Result Thus, the integral \( \int \frac{1}{1 + e^x} \, dx \) is equal to: \[ \ln \left( \frac{e^x}{e^x + 1} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)-1)dx is equal to

What is int (1)/(1 + e^(x))dx equal to ? where c is a constant of integration

int(dx)/(1+e^(-x)) is equal to

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral int_(0)^(a) (1)/(1+e^(f(x)))dx is equal to

The value of int(x-1)e^(-x) dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.