Home
Class 12
MATHS
If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^...

If `int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c`, then `f(pi/3)=`

A

1

B

2

C

3

D

`1/3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)(tan^kx)+c , then k is=

int_0^(pi/2) sin^4x/(sin^4x+cos^4x) dx=

f(x) = int (dx)/(sin^(4)x) is a

int_(0)^( pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is

underset then If int(dx)/(sin^(4)x+cos^(4)x)=(1)/(sqrt(2))tan^(-1)f(x)+C

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

int_(0)^(pi//2)(cos^(4)x)/((sin^(4)x+cos^(4)x))dx=(pi)/(4)