Home
Class 12
MATHS
The integral int(sin^(2)xcos^(2)x)/(si...

The integral
`int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2)dx` is equal to
(where c is a constant of integration)

A

`(-1)/(3(1+tan^(3)x))+c`

B

`1/(1+cot^(3)x)+c`

C

`(-1)/(1+cot^(3)x)+c`

D

`1/(3(1+tan^(3)x))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx

int(dx)/(sin^(2)xcos^(2)x)

int(dx)/(sin^(2)xcos^(2)x

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

int(3sin^(3)x+cos^(3)x)/(sin^(2)xcos^(2)x)dx=

int(sin2xcos2x)/(sin^(4)2x+cos^(4)2x)dx=

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx