Home
Class 12
MATHS
If I=int(dx)/sqrt((1-x)(x-2)), then I is...

If `I=int(dx)/sqrt((1-x)(x-2))`, then I is equal to

A

`sin^(-1)(2x-3)+C`

B

`sin^(-1)(2x+5)+C`

C

`sin^(-1)(3-2x)+C`

D

`sin^(-1)(5-2x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{(1-x)(x-2)}} \), we will follow a series of steps to simplify and evaluate the integral. ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ I = \int \frac{dx}{\sqrt{(1-x)(x-2)}} \] 2. **Simplify the Expression Under the Square Root**: We can express the square root in a more manageable form: \[ (1-x)(x-2) = -x^2 + 3x - 2 \] Thus, we rewrite the integral: \[ I = \int \frac{dx}{\sqrt{-x^2 + 3x - 2}} \] 3. **Complete the Square**: To simplify \(-x^2 + 3x - 2\), we complete the square: \[ -x^2 + 3x - 2 = -\left(x^2 - 3x + \frac{9}{4} - \frac{9}{4} + 2\right) = -\left((x - \frac{3}{2})^2 - \frac{1}{4}\right) \] Therefore: \[ -x^2 + 3x - 2 = -\left((x - \frac{3}{2})^2 - \frac{1}{4}\right) = \frac{1}{4} - (x - \frac{3}{2})^2 \] 4. **Substitute Back into the Integral**: Now substitute back into the integral: \[ I = \int \frac{dx}{\sqrt{\frac{1}{4} - (x - \frac{3}{2})^2}} \] 5. **Use a Trigonometric Substitution**: Let \( x - \frac{3}{2} = \frac{1}{2} \sin \theta \), then \( dx = \frac{1}{2} \cos \theta \, d\theta \): \[ I = \int \frac{\frac{1}{2} \cos \theta \, d\theta}{\sqrt{\frac{1}{4} - \frac{1}{4} \sin^2 \theta}} = \int \frac{\frac{1}{2} \cos \theta \, d\theta}{\frac{1}{2} \sqrt{1 - \sin^2 \theta}} = \int \cos \theta \, d\theta \] 6. **Integrate**: The integral of \( \cos \theta \) is: \[ I = \sin \theta + C \] 7. **Back Substitute**: Recall that \( \sin \theta = \frac{2(x - \frac{3}{2})}{1} = 2x - 3 \): \[ I = 2x - 3 + C \] ### Final Answer: Thus, the value of the integral is: \[ I = 2x - 3 + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

"I=int(x)/(sqrt((1-x)))dx

If I=int(dx)/(x^(3)sqrt(x^(2)-1)), then I equals

If I=int(x^2+1dx)/(sqrt(1+x^(2))

I=int(1)/(x-sqrt(x))dx

I=int(1)/(x+sqrt(x))dx

I=int(1)/(x-sqrt(x))dx

If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))) , then I equals

I=int(dx)/(sqrt(x^(2)-a^(2)))

I=int(x+1)/(sqrt(x+2))dx

int(dx)/((1+sqrt(x))*sqrt(x-x^(2))) is equal to