Home
Class 12
MATHS
The value of the integral int(dx)/((e^(x...

The value of the integral `int(dx)/((e^(x)+e^(-x)))` is

A

`1/(2(e^(2x)+1))+c`

B

`(-1)/(2(2e^(x)+1))+c`

C

`1/(3(e^(2x)+1))+c`

D

`(-1)/(e^(2x)+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

inte^(x)(e^(x)-e^(-x))dx=

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is: