Home
Class 12
MATHS
If I=int(sin2x)/((3+4cosx)^(3))dx , then...

If `I=int(sin2x)/((3+4cosx)^(3))dx` , then I=

A

`(3cosx+8)/(3+4cosx)^(2)+C`

B

`(3+8cosx)/(16(3+4cosx)^(2))+C`

C

`(3+cosx)/(3+4cosx)^(2)+C`

D

`(3-8cosx)/(16(3+4cosx)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/((3+4cos x)^(3))dx=

If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

If int(sin2x)/((3+4cos x)^(3))dx

int(sin3x)/(cosx)dx=

int(sin2x)/(cos^2x+3cosx+2)dx

I=int(dx)/(sin x cos^(3)x)

int(dx)/(sin x(3+2cosx))

int(cosx)/(sin^3 x)dx

If I_(1)=int_(0)^((pi)/(2))(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^((pi)/(2))(sin^(2)x)/(1+sin^(2)x)dxI_(3)=int_(0)^((pi)/(2))(1+2cos^(2)x sin^(2)x)/(4+2cos^(2)x sin^(2)x)dx, then I_(1)=I_(2)>I_(3)(b)I_(3)>I_(1)=I_(2)I_(1)=I_(2)=I_(3)(d) none of these

I=inte^(cosx-sinx)(sin x+cos x)dx