Home
Class 12
MATHS
int(dx)/(cosxsqrt(1+cos2x+sin2x))=""+c, ...

`int(dx)/(cosxsqrt(1+cos2x+sin2x))="________"+c, (0 lt x lt pi/4)`

A

`2+sqrt(cotx)`

B

`sqrt(tanx+1)`

C

`sqrt(2+2tanx)`

D

`sqrt(2+2cotx)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

inte^(sinx)(xcosx-secxtanx)dx="______"+c, 0 lt x lt pi/2

If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)/(pi-2x)", for " pi/2 lt x lt pi):} , then

int sin ^ (- 1) (cos x) dx, 0 <= x <= pi

If f(x)={:{((sin2x)/(sqrt(1-cos2x))", for " 0 lt x le pi/2),((cos x)/(pi-2x)", for "pi/2 lt x le pi):}

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

int_(0)^( pi)cos2x*log(sin x)dx

Express tan^(-1) ((cos x )/( 1- sin x) ) , ( -3 pi)/(2) lt x lt (pi)/(2) in the simplest form

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4