Home
Class 12
MATHS
int1/(a+be^(x))dx=...

`int1/(a+be^(x))dx=`

A

`1/blogabs(a+be^(x))+c`

B

`-1/blogabs(a+be^(x))+c`

C

`-1/blogabs(ae^(x)+1)+c`

D

`1/alogabs(e^(x)/(a+be^(x)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{a + b e^x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int \frac{1}{a + b e^x} \, dx \). ### Step 2: Factor out \( e^x \) We can rewrite the integrand by factoring out \( e^x \): \[ I = \int \frac{e^{-x}}{e^{-x}(a + b e^x)} \, dx = \int \frac{e^{-x}}{a e^{-x} + b} \, dx \] ### Step 3: Substitution Now, let \( t = a + b e^x \). Then, we differentiate: \[ dt = b e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{b e^x} = \frac{dt}{b \left( \frac{t - a}{b} \right)} = \frac{dt}{t - a} \] ### Step 4: Substitute in the Integral Substituting \( t \) into the integral gives: \[ I = \int \frac{e^{-x}}{t} \cdot \frac{dt}{b \left( \frac{t - a}{b} \right)} = \int \frac{e^{-x}}{t} \cdot \frac{dt}{t - a} \] ### Step 5: Express \( e^{-x} \) From our substitution \( t = a + b e^x \), we can express \( e^{-x} \) as: \[ e^{-x} = \frac{t - a}{b} \] Thus, the integral becomes: \[ I = \int \frac{(t - a)/b}{t} \cdot \frac{dt}{b} = \frac{1}{b^2} \int \left( 1 - \frac{a}{t} \right) dt \] ### Step 6: Integrate Now, we can integrate: \[ I = \frac{1}{b^2} \left( t - a \ln |t| \right) + C \] ### Step 7: Substitute Back for \( t \) Substituting back for \( t \): \[ I = \frac{1}{b^2} \left( a + b e^x - a \ln |a + b e^x| \right) + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{a + b e^x} \, dx = \frac{1}{b} \ln |a + b e^x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(1+e^(-x))dx=

Evaluate: int(1)/(1+e^(-x))dx

int1/(1+e^(x))dx is equal to

int_1^2e^({x})dx=?

int1/(1-sin x)*dx

(d) int(1)/(x sqrt(x))dx

" (2) "int(1)/(x sqrt(x))dx

int(1)/((1+tan x))dx

I=int1/(sqrt(a-x))dx

int1/(tanxcos^4x)dx