Home
Class 12
MATHS
The integral int (sec^2x)/(secx+tanx)^(9...

The integral `int (sec^2x)/(secx+tanx)^(9/2)dx` equals to (for some arbitrary constant `K`) (A) `-1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K` (B) `1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K` (C) `-1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K` (D) `1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K`

A

`(-1)/(secx+tanx)^(11//2){1/11-1/7(secx+tanx)^(2)}+K`

B

`(1)/(secx+tanx)^(11//2){1/11-1/7(secx+tanx)^(2)}+K`

C

`(-1)/(secx+tanx)^(11//2){1/11+1/7(secx+tanx)^(2)}+K`

D

`(1)/(secx+tanx)^(11//2){1/11+1/7(secx+tanx)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(secx+tanx)^(2)dx=

int((secx)/(secx-tanx))dx equals

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

(secx-1)(secx+1)

tan^(-1)(secx+tanx)

int(1)/(a secx+b tanx)dx=

int sec x log(secx+tanx)dx=