Home
Class 12
MATHS
int xcos^(2)xdx=...

`int xcos^(2)xdx=`

A

`x^(2)/4-1/4xsin2x-1/8cos2x+c`

B

`x^(2)/4+1/4xsin2x+1/8cos2x+c`

C

`x^(4)-1/4xsin2x+1/8cos2x+c`

D

`x^(4)+1/4xsin2x-1/8cos2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand Using the identity \( \cos^2 x = \frac{1 + \cos 2x}{2} \), we can rewrite the integral: \[ \int x \cos^2 x \, dx = \int x \cdot \frac{1 + \cos 2x}{2} \, dx = \frac{1}{2} \int x (1 + \cos 2x) \, dx \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ \frac{1}{2} \int x (1 + \cos 2x) \, dx = \frac{1}{2} \left( \int x \, dx + \int x \cos 2x \, dx \right) \] ### Step 3: Solve the first integral The first integral is straightforward: \[ \int x \, dx = \frac{x^2}{2} \] ### Step 4: Solve the second integral using integration by parts For the second integral \( \int x \cos 2x \, dx \), we will use integration by parts. Let: - \( u = x \) (then \( du = dx \)) - \( dv = \cos 2x \, dx \) (then \( v = \frac{1}{2} \sin 2x \)) Applying integration by parts: \[ \int x \cos 2x \, dx = uv - \int v \, du = x \cdot \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x \, dx \] ### Step 5: Solve the integral \( \int \sin 2x \, dx \) The integral \( \int \sin 2x \, dx \) can be solved as follows: \[ \int \sin 2x \, dx = -\frac{1}{2} \cos 2x \] ### Step 6: Substitute back Now substituting back into our integration by parts result: \[ \int x \cos 2x \, dx = \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x \] ### Step 7: Combine all parts Now we can combine all parts: \[ \frac{1}{2} \left( \int x \, dx + \int x \cos 2x \, dx \right) = \frac{1}{2} \left( \frac{x^2}{2} + \left( \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x \right) \right) \] ### Step 8: Final expression Putting everything together, we have: \[ \int x \cos^2 x \, dx = \frac{1}{4} x^2 + \frac{1}{4} x \sin 2x + \frac{1}{8} \cos 2x + C \] Where \( C \) is the constant of integration. ### Final Answer: \[ \int x \cos^2 x \, dx = \frac{x^2}{4} + \frac{x \sin 2x}{4} + \frac{\cos 2x}{8} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int xcos^(3)xdx

int cos^(2)xdx

int cos^(2)xdx

int cosec^(2)xdx

int xcosec^2xdx

int cot^(2)xdx

int x sec^(2)xdx

int sec^(2)xdx=

int sin^(2)2xdx

int sin^(2)xdx