Home
Class 12
MATHS
The value of int(e^(x)(x^(2)tan^(-1)x+ta...

The value of `int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx` is equal to

A

`tan^(-1)(e^(x))+c`

B

`e^(tan^(-1)x)+c`

C

`e^(x)tan^(-1)x+c`

D

`tan^(-1)(x^(e))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(tan^(-1)x)/(x^(2))*dx

int(((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1))dx is equal to

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int ((x^(2)+2)(a^((x+tan^(-1)x)))/(x^(2)+1)) dx is equal to

int(e^(m tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx