Home
Class 12
MATHS
inte^(tanx)(sec^(2)x+sec^(3)x sinx)dx is...

`inte^(tanx)(sec^(2)x+sec^(3)x sinx)dx` is equal to

A

`secx*tanx*e^(x)+c`

B

`tanx*e^(tanx)+c`

C

`sec^(2)x*e^(tanx)+c`

D

`tan^(2)x*e^(tanx)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

inte^(tanx)(sec^(2)x+sec^(3)xsinx)dx is equal to

int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

int sec^(4)x cosec^(2)x dx is equal to

int tanx sec^(2)x*dx

int e^tanx sec^2x dx

int x sinx sec^(3)x dx is equal to

int e^x(tanx +sec^2x)dx

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

What int sec x^(@) dx is equal to ?

int e^(x) sec x (1 + tan x) dx is equal to