Home
Class 12
MATHS
inte^(sinx)((sinx+1)/(secx))dx is equal ...

`inte^(sinx)((sinx+1)/(secx))dx` is equal to

A

`sinx.e^(sinx)+c`

B

`cosx.e^(sinx)+c`

C

`e^(sinx)+c`

D

`e^(sinx)(sinx+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(2sinx+(1)/(x))dx is equal to

inte^(tanx)(sinx-secx)dx is equal to

int(sinx)/(sinx-a)dx is equal to

inte^(x)((1+sinx)/(1+cosx))dx=

int(x+sinx)/(1+cosx)\ dx is equal to

The value of inte^(x)[(1+sinx)/(1+cosx)]dx is equal to

int(sinx-cosx)^(4)(sinx+cosx)dx is equal to