Home
Class 12
MATHS
inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is e...

`inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx` is equal to

A

`xe^(tan^(-1)x)+c`

B

`x^(2)e^(tan^(-1)x)+c`

C

`1/xe^(tan^(-1)x)+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int tan^(-1)((2x)/(1-x^(2)))dx

int(((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1))dx is equal to

int ((x^(2)+2)(a^((x+tan^(-1)x)))/(x^(2)+1)) dx is equal to

inte^(x){tan^(-1)x+(1)/((1+x^(2)))}dx=?