Home
Class 12
MATHS
The value of inte^(2x)(1/x-1/(2x^(2)))dx...

The value of `inte^(2x)(1/x-1/(2x^(2)))dx` is

A

`e^(2x)/2+c`

B

`e^(2x)/(2x)+c`

C

`e^(2x)/(3x)+c`

D

`e^(2x)/x+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of int(x^(2)+(1)/(x^(2)))dx

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of int(x^(2)+1)/(x^(2)-1)dx is

The value of int(x^(2)-1)/(x^(4)+1)dx is

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

The value of int_(1)^(3)(dx)/(x(1+x^(2))) is

The value of int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2)))dx is equal to

Evaluate : (i) inte^(x)((1)/(x)-(1)/(x^(2)))dx (ii) inte^(x)((1)/(x^(2))-(2)/(x^(3)))dx (iii) inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}dx (iv) inte^(x)(tanx+logsecx)dx

The value of int_(0)^(1)x|x-1/2|dx is