Home
Class 12
MATHS
int(1/(x-3)-1/(x^(2)-3x))dx=""+c, x gt 3...

`int(1/(x-3)-1/(x^(2)-3x))dx="________"+c, x gt 3`

A

`1/3log[x(x-3)]`

B

`1/3log[sqrt(x)(x-3)]`

C

`2/3log[x(x-3)]`

D

`2/3log[sqrt(x)(x-3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \left( \frac{1}{x-3} - \frac{1}{x^2 - 3x} \right) dx\), we can break it down into two separate integrals. ### Step 1: Rewrite the integral The integral can be rewritten as: \[ \int \left( \frac{1}{x-3} - \frac{1}{x(x-3)} \right) dx \] ### Step 2: Simplify the second term The second term can be simplified: \[ \frac{1}{x^2 - 3x} = \frac{1}{x(x-3)} \] Thus, the integral becomes: \[ \int \frac{1}{x-3} dx - \int \frac{1}{x(x-3)} dx \] ### Step 3: Integrate the first term The first integral is straightforward: \[ \int \frac{1}{x-3} dx = \ln |x-3| + C_1 \] ### Step 4: Integrate the second term using partial fractions For the second integral, we can use partial fractions: \[ \frac{1}{x(x-3)} = \frac{A}{x} + \frac{B}{x-3} \] Multiplying through by \(x(x-3)\) gives: \[ 1 = A(x-3) + Bx \] Setting \(x = 0\) gives \(A(-3) = 1 \Rightarrow A = -\frac{1}{3}\). Setting \(x = 3\) gives \(B(3) = 1 \Rightarrow B = \frac{1}{3}\). Thus, we can rewrite: \[ \frac{1}{x(x-3)} = -\frac{1}{3x} + \frac{1}{3(x-3)} \] ### Step 5: Integrate the second term Now we can integrate: \[ \int \left(-\frac{1}{3x} + \frac{1}{3(x-3)}\right) dx = -\frac{1}{3} \ln |x| + \frac{1}{3} \ln |x-3| + C_2 \] ### Step 6: Combine the results Combining both integrals, we have: \[ \int \left( \frac{1}{x-3} - \frac{1}{x^2 - 3x} \right) dx = \ln |x-3| - \left(-\frac{1}{3} \ln |x| + \frac{1}{3} \ln |x-3|\right) + C \] This simplifies to: \[ \ln |x-3| + \frac{1}{3} \ln |x-3| - \frac{1}{3} \ln |x| + C \] \[ = \frac{4}{3} \ln |x-3| - \frac{1}{3} \ln |x| + C \] ### Final Result Thus, the final answer is: \[ \frac{4}{3} \ln |x-3| - \frac{1}{3} \ln |x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)-1)/(x^(3)-3x-9)dx

int_(0)^(3)(1)/(x^(2)-3x+2)dx

int(3x)/((x-1)(x-2)(x-3))dx

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int(3x-2)/((x+1)^(2)(x+3))dx

int(2x-3)/(x^(3)(x-1))dx=

int(x^(2)+1)/(x^(3)+3x+3)dx

int(x^(2)+1)/(x^(3)+3x+3)dx

int_(2)^(3)(1)/(x(x^(3)-1))dx=

1. int(x)/(x^(2)+3x+2)dx