Home
Class 12
MATHS
int1/(x^(6)+x^(4))dx is equal to...

`int1/(x^(6)+x^(4))dx` is equal to

A

`1/(3x^(3))-1/x+tan^(-1)x+c`

B

`1/(3x^(3))+1/x-tan^(-1)x+c`

C

`-1/(3x^(3))-1/x+tan^(-1)x+c`

D

`-1/(3x^(3))+1/x+tan^(-1)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^6 + x^4} \, dx \), we can follow these steps: ### Step 1: Factor the Denominator We start by factoring the denominator: \[ x^6 + x^4 = x^4(x^2 + 1) \] Thus, we can rewrite the integral as: \[ \int \frac{1}{x^4(x^2 + 1)} \, dx \] ### Step 2: Use Partial Fraction Decomposition Next, we will use partial fraction decomposition to break down the integrand: \[ \frac{1}{x^4(x^2 + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x^4} + \frac{Ex + F}{x^2 + 1} \] Multiplying through by the denominator \( x^4(x^2 + 1) \) gives: \[ 1 = A x^3(x^2 + 1) + B x^2(x^2 + 1) + C x(x^2 + 1) + D(x^2 + 1) + (Ex + F)x^4 \] ### Step 3: Expand and Collect Like Terms Expanding the right-hand side, we collect like terms based on powers of \( x \): \[ 1 = (A + B + C + D)x^4 + (E)x^4 + (A + B + C + D)x^2 + (F)x^0 \] Setting coefficients equal gives us a system of equations. ### Step 4: Solve for Coefficients By substituting values for \( x \) (like \( x = 0 \)), we can find the coefficients \( A, B, C, D, E, F \). After solving, we find: - \( D = 1 \) - \( B = -1 \) - \( A = 0 \) - \( C = 0 \) - \( E = 0 \) - \( F = 0 \) Thus, the partial fraction decomposition simplifies to: \[ \frac{1}{x^4} - \frac{1}{x^2} + \frac{1}{x^2 + 1} \] ### Step 5: Integrate Each Term Now we can integrate each term separately: \[ \int \left( \frac{1}{x^4} - \frac{1}{x^2} + \frac{1}{x^2 + 1} \right) \, dx = \int x^{-4} \, dx - \int x^{-2} \, dx + \int \frac{1}{x^2 + 1} \, dx \] Calculating these integrals: 1. \( \int x^{-4} \, dx = -\frac{1}{3x^3} \) 2. \( \int x^{-2} \, dx = -\frac{1}{x} \) 3. \( \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x) \) ### Step 6: Combine Results Combining the results of the integrals, we have: \[ -\frac{1}{3x^3} + \frac{1}{x} + \tan^{-1}(x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x^6 + x^4} \, dx = -\frac{1}{3x^3} + \frac{1}{x} + \tan^{-1}(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x(x^(4)-1))dx is equal to

int(x^(2))/(x^(6)+1)dx is equal to : "

1. int(x^3)/(4+x^(4))dx is equal to

int(x^(4))/(x^(2)+1)dx is equal to

The value of int(x^(2))/(1+x^(6))dx is equal to

int(x)/(4+x^(4))dx is equal to

int(x)/(4+x^(4))dx is equal to

int(x)/(4+x^(4))dx is equal to

int _(-1)^(1) x^(3) e^(x^(4)) dx is equal to

int(sqrt(x^(2)+1))/(x^(4))dx is equal to

TARGET PUBLICATION-INTEGRATION-COMPETITIVE THINKING
  1. समाकलन करें int (xdx)/((x^(2)-a^(2))(x^(2)-b^(2)))dx.

    Text Solution

    |

  2. If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/...

    Text Solution

    |

  3. If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/...

    Text Solution

    |

  4. int(5x^(2)+3)/(x^(2)(x^(2)-2))dx=

    Text Solution

    |

  5. int1/(x^(6)+x^(4))dx is equal to

    Text Solution

    |

  6. int(dx)/(e^(2x)-3e^(x))=

    Text Solution

    |

  7. If int(x)/((x^(2)+1)(x-1))dx =Alogabs(x^(2)+1)+Btan^(-1)x+Clogabs(x-...

    Text Solution

    |

  8. int(2x+3)/((x-1)(x^2+1))dx =loge{(x-1)^(5/2)(x^2+1)^a-1/2 tan^-1 x+C,x...

    Text Solution

    |

  9. int(d x)/(x(x^4+1))=

    Text Solution

    |

  10. int(dx)/(x^(3)+3x^(2)+2x)=

    Text Solution

    |

  11. int(dx)/(sinx+sin2x) का मान ज्ञात कीजिए ।

    Text Solution

    |

  12. If intf(x)/(logcosx)dx=-log(logcosx)+c, then f(x) is equal to

    Text Solution

    |

  13. If int(f(x))/(log(sinx))dx=log[log sinx]+c, then f(x) is equal to

    Text Solution

    |

  14. If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

    Text Solution

    |

  15. If intf(x)*cosxdx=1/2{f(x)}^2+c, then f(0)= (A) 1 (B) 0 (C) -1 (D) non...

    Text Solution

    |

  16. If f'(x)=2-5/x^(4) " and " f(1)=14/3, " then " f(-1)=

    Text Solution

    |

  17. If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C then f(x) is equ...

    Text Solution

    |

  18. If d/dx[f(x)]=xcosx+sinx " and " f(0)=2, then f(x)=

    Text Solution

    |

  19. If intlog(x^(2)+x)dx=xlog(x^(2)+x)+A, then A=

    Text Solution

    |

  20. If I(1)=intsin^(-1)xdx and I(2)sin^(-1)sqrt(-x^(2))dx, then

    Text Solution

    |