Home
Class 12
MATHS
For a >0,!=1, the roots of the equation ...

For `a >0,!=1,` the roots of the equation `(log)_(a x)a+(log)_x a^2+(log)_(a^2a)a^3=0` are given `a^(-4/3)` (b) `a^(-3/4)` (c) `a` (d) `a^(-1/2)`

A

`a^(-4//3)`

B

`a^(-3//4)`

C

`a`

D

`a^(-1//2)`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`log_(ax)(a) +log_(x)(a^(2))+log_(a^(2)x)a^(3) = 0`
`rArr (1)/(log_(a)(ax))+(2)/(log_(a)x)+(3)/(log_(a)(a^(2)x)=0`
`rArr (1)/(1+log_(a)x)+(2)/(log_(a)x)+(3)/(2+log_(a)x)=0`
Let `log_(a)x = t`
`(1)/(1 + t) + (2)/(t) + (3)/(2 + t) = 0`
`rArr t(2+t) + 2(1+t)(2+t) + 3t(1+t)=0`
`rArr 2t+t^(2)+2(t^(2)+3t+2)+3t^(2)+3t=0`
`rArr 6t^(2)+11t+4=0`
`rArr 6t^(2)+8t+3t+4=0`
`rArr 2t(3t + 4) + 1(3t + 4) = 0`
`rArr (3t + 4)(2t + 1) = 0`
`:. t = -(4)/(3)` or `t = -(1)/(2)`
`log_(a)x = -(4)/(3)` or `log_(a)x = -(1)/(2)`
`x = a^(4//3), x = a^(-1//2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE|Exercise MATHEMATICS|263 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

Solve the following equation of x:2(log)_(x)a+(log)_(ax)a+3(log)_(a^(2)x)a=0,a>0

Solve for x:(lg)_(4)(log)_(3)(log)_(2)x=0

Knowledge Check

  • For agt0, ne 1 the roots of the equation log_(ax)a+log_(x)a^(2)+log_(a^(2)x)a^(3)=0 are given by

    A
    `a^(-3//4)`
    B
    `a^(-4//3)`
    C
    `a^(-1//2)`
    D
    none of these
  • The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

    A
    12
    B
    2
    C
    10
    D
    11
  • The sum of the roots of the equation x + 1 - 2 log_(2) (2^(x) + 3) + 2 log_(4) (10 - 2^(-x))= 0 " " is

    A
    `log_(2) 11`
    B
    `log_(2) 12`
    C
    `log_(2)13`
    D
    `log_(2) 14`
  • Similar Questions

    Explore conceptually related problems

    Product of roots of the equation (log_(a)x)^(3)-12(log x)^(2)+44log_(a)x-48=0 is 64, then a is

    if the roots of the equation x^(2)-x ln(a^(2)-3a+2)+a^(2)-4=0 are of opposite sign,then

    Solve :2(log)_(3)x-4(log)_(x)27 1)

    Solve 4^((log)_(9)x)-6x^((log)_(9)2)+2^((log)_(3)27)=0

    If the root of the equation log_(2)(x)-log_(2)(sqrt(x)-1)=2 is alpha, then the value of alpha^(log_(4)3) is (a) 1 (b) 2 (c) 3 (d) 4