Home
Class 12
MATHS
If 4^(x + 1) - 16^(x) gt 2log(4)8 then x...

If `4^(x + 1) - 16^(x) gt 2log_(4)8` then `x` may be

A

`(1)/(2)`

B

`(3)/(2)`

C

`(3)/(4)`

D

`(4)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`4^(x) = y`
`4y - y^(2) gt 3`
`y^(2) - 4y + 3 lt 0`
`1 lt y lt 3`
`1 lt 4^(x) lt 3`
`0 lt x lt log_(4)3`
`log_(4)4 gt log_(4)3 gt log_(3)2sqrt(2) gt log_(4)3 gt log_(4)sqrt(2)`
`rArr 1 gt log_(4)3 gt (3)/(4) gt (1)/(2) gt (1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If log_(4)(x - 1) = log_(2)(x - 3) , then x may be

x^(log_(5^(x))) gt 5 then x may belongs to

If log(x^(2) - 16) le log_(e) (4 x -11) , then

If 1+ log_2 (1+ cos 2x) gt log_4 2 then find x.

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

If 2log(x+4) = log 16, then x=?

Solve the inequation 4^(x+1)-16^(x)lt2log_(4)8

If log_(2)(4^(x+1)+4)log_(2)(4^(x)+1)=log_(2)(8) then x equals what