Home
Class 12
MATHS
If a ,b ,c in Ra n da b c<0 , then equa...

If `a ,b ,c in Ra n da b c<0` , then equation `b c x^2+2b+c-a)x+a=0h a s` both positive roots both negative roots real roots one positive and one negative root

A

both positive roots

B

both negative roots

C

real roots

D

one positive and one negative root.

Text Solution

Verified by Experts

The correct Answer is:
C, D

Given `abc lt 0`
product of roots of the given equation `= (a)/(bc) xx (bc)/(bc)`
`= (abc)/((bc)^(2)) lt 0`
`:'` product of roots is `lt 0`
`:.` one roots is positive and one is negative real roots
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If a , b ,c in Ra n da(a+b)+b(b+c)+c(c+a)=0 then a.a=b=c=0 b. a+b+c+=0 c. (a-b)^2+(b-c)^2+(c-a)^2=0 d. a^3+b^3+c^3+3a b c=0

Roots of the equation |x m n1a x n1a b x1a b c1|=0 are independent of m ,a n dn independent of a ,b ,a n dc depend on m ,n ,a n da ,b ,c independent of m , na n da ,b ,c

A segment of a line P Q with its extremities on A Ba n dA C bisects a triangle A B C with sides a ,b ,c into two equal areas. Find the shortest length of the segment P Qdot

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

A ,B ,Ca n dD have position vectors vec a , vec b , vec ca n d vec d , respectively, such that vec a- vec b=2( vec d- vec c)dot Then a. A Ba n dC D bisect each other b. B Da n dA C bisect each other c. A Ba n dC D trisect each other d. B Da n dA C trisect each other

In a triangle A B C , let P a n d Q be points on A Ba n dA C respectively such that P Q || B C . Prove that the median A D bisects P Qdot

Statement 1: if a ,b ,c ,d are real numbers and A=[a b c d]a n dA^3=O ,t h e nA^2=Odot Statement 2: For matrix A=[a b c d] we have A^2=(a+d)A+(a d-b c)I=Odot