Home
Class 12
MATHS
If log(4)(x - 1) = log(2)(x - 3) , then ...

If `log_(4)(x - 1) = log_(2)(x - 3)` , then `x` may be

A

`x = 5`

B

`x = 9`

C

`x = 2`

D

`x = 4`

Text Solution

Verified by Experts

The correct Answer is:
A

`x - 1 = (x - 3)^(2) rArr x^(2) - 7 x + 10 = 0`
`x = 5, 2`
only `x = 5`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

Solve log_(4)(x-1)= log_(2) (x-3) .

log_(2)(x+1)-log_(2)(3x-1)=2

If 1,log_(4)(x+3),log_(2)(2x-3) are in AP, then x is

log_(2)(3-x)+log_(2)(1-x)=3

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

If log_(4)(log_(2)x) + log_(2) (log_(4) x) = 2 , then find log_(x)4 .

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

log_(2)log_(3)log_(4)(x-1)>0