Home
Class 12
MATHS
(x - 1)^(2)/(x - 2)^(2) ge 1 then subset...

`(x - 1)^(2)/(x - 2)^(2) ge 1` then subset in solution set may be

A

`(-oo, (3)/(2)]`

B

`[(3)/(2), 2)`

C

`[2 , oo)`

D

`(3, oo)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

`(x - 1)^(2)/(x - 2)^(2)- 1 ge 0`

`((x - 1)^(2) - (x - 2)^(2))/(x - 2)^(2)ge 0`
`((2x - 3))/(x - 2)^(2) ge 0`
`[(3)/(2), 2)cup(2, oo)`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If ((x^(2)-1)(x+2)(x+1)^(2))/((x-2))lt0 , then complete solution set of inequation is

If 3^(x)+2^(2x) ge 5^(x) , then the solution set for x, is

Let f (x) = (x +1)^(2) -1 ( x ge -1). Then the number of elements in the set S = {x :f (x) = f ^(-1)(x)} is

Let f(x)=x^(2)-x+1, AA x ge (1)/(2) , then the solution of the equation f(x)=f^(-1)(x) is

Solve: (2x-3)/(4)+8ge2+(4x)/(3) and show the solution set on the number line.

If the solution set of |x-k|<2 is a subset of the solution set of the inequality (2x-1)/(x+2)<1 then the number of possible integral value(s) of 'k' is/are-

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

Let f(x) = (x+1)^(2) - 1, (x ge - 1) . Then, the set S = {x : f(x) = f^(-1)(x) } is

Find the solution set of 3x-1ge5,x+2gt-1 .

If the solution set of |x-k| lt 2 is a subset of the solution of the inequality (2x-1)/(x+2) lt 1 , then the number of possible integral value(s) of k is/ are :