Home
Class 12
MATHS
Supose that alpha lt x lt beta the solut...

Supose that `alpha lt x lt beta` the solution to the following inequality `((1)/(3))^(x^(2) + 1) gt ((1)/(9))^(x + 2)` then `beta - alpha` is equal to

A

`2`

B

`-2`

C

`5`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
D

`x^(2) + 1 lt 2x + 4 rArr x^(2) - 2x - 3 lt 0`
`(x - 3) (x +1) lt 0`
`-1 lt x lt 3`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

If 0 lt a lt 1 , then the solution set of the inequation (1+(log_(a)x)^(2))/(1+(log_(a)x)) gt1 , is

The solution set of the inequality (1)/(x-2)-(1)/(x)<=(2)/(x+2) is (-alpha,beta]uu(gamma,alpha)uu[delta,oo), then

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

Let alpha and beta be the solutions of the quadratic equation x^(2)-1154x+1=0, then the value of alpha^((1)/(4))+beta^((1)/(4)) is equal to

If 0 lt alpha lt beta then lim_(n to oo) (beta^(n) + alpha^(n))^((1)/(n)) is equal to

If alpha and beta are solutions of the equation 4log_(3)^(2)x-4log_(3)x^(2)+1=0 then the value of |(sqrt(alpha beta)+1)/(sqrt(alpha beta)-1)| is

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals