Home
Class 12
MATHS
The set of real values of x for which lo...

The set of real values of `x` for which `log_(2x + 3) x^(2)ltlog_(2x+3)(2x + 3)` is `(a,b) uu (b,c) uu (c,d)` then

A

`2a + b = c + d + 1`

B

`2a = 3b`

C

`c + d = 3`

D

`b + d = 2`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

Case - `1`
If `2x + 3 gt 1 rArr x gt -1 …..(1)`
then `x^(2) lt 2x + 3`
`x^(2) - 2x - 3 lt 0`
`x in (-1, 3) …(2)`
`rArr (1) cap (2) = (-1, 3)`
Case `-2`
`0 lt 2x + 3 lt 1 rArr (-3)/(2) lt x lt 1 …..(3)`
then `x^(2) gt 2x + 3`
`rArr x lt -1 cup x gt 3 ......(4)`
`rArr (3) cap (4) (-3)/(2) lt x lt -1`
but by definition of log `x^(2) gt 0`
`rArr x lt 0 cup gt 0, x ne 0`
so final
`((-3)/(2), -1) cup (-1, 0) cup(0, 3)`
`rArr a = (-3)/(2), b = -1, c = 0, d = 3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

Solve the inequation log_(2x+3)x^(2)ltlog_(2x+3)(2x+3)

The set of real values of x satisfying the equation |x-1|^(log_(3)(x^(2))-2log_(x)9)=(x-1)^(7)

Knowledge Check

  • Complete set of real values of x for which log_((2x-3))(x^(2)-5x-6) is defined is :

    A
    `((3)/(2),oo)`
    B
    `(6, oo)`
    C
    `((3)/(2),6)`
    D
    `((3)/(2),2) cup (2, oo)`
  • Similar Questions

    Explore conceptually related problems

    Number of real values of x satisfying the equation log_(2)(x^(2)-x)*log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is (a)0(b)2(c)3(d)7

    The sum of the real solutions of the equation log_(2)|x^(2)+2x-3|-log_(2)|x+3|=3

    The set of values of c for which x^(3)-6x^(2)+9x-c is of the form (x-a)^(2)(x-b)(a,b is real) is given by

    If log_(1/2)(x+2)<-2ltlog_((1)/(4))(2x) and x in (a,b) then b-a=

    Number of integral solutions of the equation log_(x-3)(log_(2x^(2)-2x+3)(x^(2)+2x))=0 is 4(b)2 (c) 1(d)0

    The set of all real numbers x for which x^2-|x+2|+x >0 is (a)(-oo,-2)uu(2,oo) (b) (-oo,-sqrt(2))uu(sqrt(2),oo) (c)(-oo,-1)uu(1,oo) (d) (sqrt(2),oo)

    If the set of value of 'x' satisfying the ineqations ((x-1)^(2)(x+1)^(3))/(x^(8)(x-2)) =0 is x in(a.b)uu(c,d),a<0 then