Home
Class 12
MATHS
For any real a, b, c the expression 2a^(...

For any real `a, b, c` the expression `2a^(2) + 11b^(2) + 4c^(2) - 8ab - 6bc - 2c + 41` is minimum then

A

`a - b - c = 0`

B

`a = 2b`

C

`a + b + c = 4`

D

`c = a`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`2(a^(2) + 4b^(2) - 4ab) + 3 (b^(2) + c^(3) - 2bc) + (c^(2) - 2c +1) + 40`
`2(a - 2b)^(2) + 3(b - c)^(2) + (c + 1)^(2) + 40`
min when `c = 1, b = 1, a = 2`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

If a,b,c are the sides ofa triangle then the expression (a^(2)+b^(2)+c^(2))/(ab+bc+ca) lies in the interval

For real a, b and c if a^(2) + b^(2) + c^(2) = ab + bc + ca , then find the value of (a + b + c)^(2) A. 9a^(2) B. 81 a^(2) C. 27 a^(2) D. 24 a^(2)

Find the product (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca) .

Find the product: (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca)

Find the product (2a + 3b - 4c) (4a ^(2) + 9b ^(2) + 16 c ^(2) - 6 ab + 12 bc +8 ca)

If a^(2) + b^(2) + c^(2) + 96 = 8(a + b - 2c) , then sqrt(ab - bc + ca) is equal to :