Home
Class 12
MATHS
Number of integers satisfying the inequa...

Number of integers satisfying the inequality `log_((x + 3)//(x - 3))4 lt 2 [log_(1//2)(x - 3)-log_(sqrt(2)//2)sqrt(x + 3)]` is greater than (A)`6` (B)`5` (C)`4` (D) `3`

A

`6`

B

`5`

C

`4`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
C, D

`x gt 3`
`log_((x + 3)/(x - 3)) 2 glt log_(2)'(x + 3)/(x - 3)`
Let `log_(2)'(x + 3)/(x - 3) = t`
`(1)/(t) lt 1 rArr x gt 3`
`t^(2) gt 1`
`rArr t gt 0 rArr gt 0`
`log_(2)'(x + 3)/(x - 3) gt 1`
`(x + 3)/(x - 3) gt 2 rArr x + 3 gt 2x - 6 rArr x lt 9`
so `3 lt x lt 9`
integral values `= 5`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

Number of integers satisfying the inequality log_((x+3))(x^2-x) lt 1 is

Number of integers satisfying the inequality log_((1)/(2))|x-3|>-1 is...

Number of integers satisfying 2^(log_(2)(x-3)<4) is

Number of integers <=10 satisfying the inequality 2log_((1)/(2))(x-1)<=(1)/(3)-(1)/(log_(x^(2)-x)) is

Number of integers <=10 satisfying the inequality 2log_((1)/(2))(x-1)<=(1)/(3)-(1)/(log_(x)2-x^(8)) is........

The number of integers satisfying the inequality log_(sqrt(0.9))log_(5)(sqrt(x^(2)+5+x))gt 0 is

Find the number of integers satisfying the inequality 1sqrt(log_((1)/(2))^(2)x+4log_(2)sqrt(x))

Find the number of integers which do not satisfy the inequality log_((1)/(2))(x+5)^(2)>log_((1)/(2))(3x-1)^(2)

(1+log_(2)(x-4))/(log_(sqrt(2))(sqrt(x+3)-sqrt(x-3)))=1

complete set of x satisfying the inequality 3^(log_(3)(sqrt(x-1)))<3^(log_(3)(x-6))+3