Home
Class 12
MATHS
If (x^(2) - x - 1)^(x^(2) - 7x + 12) = 1...

If `(x^(2) - x - 1)^(x^(2) - 7x + 12) = 1` then

A

Positive integral solutions are `4`

B

Negative integral solutions are `2`

C

non positive integral solution are `2`

D

Total integral solutions are `6`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`x^(2) - x- 1 = 1 rArr x^(2) - x- 2 = a`
`(x - 2)(x + 1) = 0 rArr x = 2, -1`
and `x^(2) - x- 1 = -1 rArr x = 0, 1`
at `x = 0 rarr x^(2) - 7x + 12 = 12`
`x = 1 rarr x^(2) - 7x + 12 = 6`
and `x^(2) - 7x + 12 = 0 rArr x = 4, 3`
so `x = {2, -1, 0, 1, 4, 3}`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

((x^(2) - 1))/((x^(2) + 7x+1))

(x^(2)-1)/(x^(2)+7x+1)

12x^(2)-7x+1

A common factor of x ^(4) - 256, x ^(3) - 4x ^(2) + 3x - 12 and x ^(2) - 7x + 12 is

A= {x//x^(2) -7x +12 =0}, B= {x//x^(2) -x-12=0}, then AnnB=