Home
Class 12
PHYSICS
Consider the following nuclear decay: (i...

Consider the following nuclear decay: (initially `.^(236)U_(92)` is at rest)
`._(92)^(236)rarr._(90)^(232)ThrarrX`
Following atomic masses and conversion factor are provided
`._(92)^(236)U=236.045 562 u`,
`._(90)^(232)Th=232.038054 u`,
`._(0)^(1)n=1.008665 ,. _(1)^(1)p=1.007277 u`,
`._(2)^(4)He=4.002603 u` and
`1 u=1.5xx10^(-10)J`
The amount of energy released in this decay is equal to:

A

`3.5xx10^(-8)J`

B

`4.6 xx10^(-12)J`

C

`6.0xx10^(-10)J`

D

`7.4xx10^(-13)J`

Text Solution

Verified by Experts

The correct Answer is:
D

`Q=(m_(u)-m_(Th)-m_(x)).C^(2)`
`=(236.045562-232.038054-4.002603)xx1.5xx10^(-10)J`
`7.4xx10^(-13)J`.
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR PHYSICS

    RESONANCE|Exercise Exercise 3 Part -1 JEE (Advanced)|19 Videos
  • NUCLEAR PHYSICS

    RESONANCE|Exercise Exercise-3 Part-II JEE (MAIN)|19 Videos
  • NUCLEAR PHYSICS

    RESONANCE|Exercise Exercise-2 Part-3 One more than one options correct type|7 Videos
  • GRAVITATION

    RESONANCE|Exercise HIGH LEVEL PROBLEMS|16 Videos
  • REVISION DPP

    RESONANCE|Exercise All Questions|444 Videos

Similar Questions

Explore conceptually related problems

Consider the following nuclear decay: (initially .^(236)U_(92) is at rest) ._(92)^(236)rarr_(90)^(232)ThrarrX Regarding this nuclear decay select the correct statement:

Consider the following nuclear decay: ""_(92)^(236)Uto""_(90)^(232)Th+X What is X?

Consider the following nuclear decay: (initially .^(236)U_(92) is at rest) ._(92)^(236)rarr_(90)^(232)ThrarrX If the uranium is at rest before its decay, which one of the following statement is true concerning the final nuclei ?

Show that ._(92)^(230)U does not decay by emitting a neutron or proton. Given: M(._(92)^(230)U)=230.033927 am u, M(._(92)^(230)U)=229.033496 am u , M(._(92)^(229)Pa)=229.032089 am u, M(n)=1.008665 am u m(p)=1.007825 am u .

Calculate the amount of energy released during the alpha -decay of ._(92)^(238)Urarr_(90)^(234)Th+._(2)^(4)He Given: atomic mass of ._(92)^(238)U=238.05079 u , atomic mass of ._(90)^(234)Th=234.04363 u , atomic mass ._(2)^(4)He=4.00260u , 1u=931.5 MeV//c^(2) . Is this decay spontaneous?Give reason.

Consider two arbitaray decay equation and mark the correct alternative s given below. (i) ._(92)^(230)U rarr n+._(92)^(229)U (ii) ._(92_^(230)U rarr P +._(91)^(229)Pa Given: M(._(92)^(230)U) =230.033927 u,M(._(92)^(229)U)=229.03349 u, m_(n)=1.008665u , M(._(91)^(229)Pa) =229.032089, m_p =1.007825, 1 am u =931.5 MeV .

Calculate the energy released in MeV in the following nuclear reaction : ._(92)^(238)Urarr._(90)^(234)Th+._(2)^(4)He+Q ["Mass of "._(92)^(238)U=238.05079 u Mass of ._(90)^(238)Th=234.043630 u Massof ._(2)^(4)He=4.002600 u 1u = 931.5 MeV//c^(2)]