Home
Class 12
MATHS
The function f(x)=sgn(x-1). Cot^(-1)[x-1...

The function `f(x)=sgn(x-1). Cot^(-1)[x-1]` is `([x] "denotes greatest integer function of x")`

A

Discontinuous at `x=1`

B

Continuous and differentiable at `x=1`

C

Not defined at `x=1`

D

Continuous but not differentiable at `x=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \text{sgn}(x-1) \cdot \cot^{-1}(x-1) \) and determine its continuity, particularly at the point \( x = 1 \). ### Step-by-Step Solution: 1. **Understanding the Signum Function**: The signum function \( \text{sgn}(x-1) \) is defined as: - \( 1 \) if \( x > 1 \) - \( 0 \) if \( x = 1 \) - \( -1 \) if \( x < 1 \) 2. **Evaluating the Function at \( x = 1 \)**: We first find \( f(1) \): \[ f(1) = \text{sgn}(1-1) \cdot \cot^{-1}(1-1) = \text{sgn}(0) \cdot \cot^{-1}(0) = 0 \cdot \frac{\pi}{2} = 0 \] 3. **Finding the Right-Hand Limit as \( x \to 1^+ \)**: We calculate the limit from the right: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \text{sgn}(x-1) \cdot \cot^{-1}(x-1) \] For \( x > 1 \), \( \text{sgn}(x-1) = 1 \): \[ \lim_{x \to 1^+} f(x) = 1 \cdot \cot^{-1}(0) = 1 \cdot \frac{\pi}{2} = \frac{\pi}{2} \] 4. **Finding the Left-Hand Limit as \( x \to 1^- \)**: Now we calculate the limit from the left: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \text{sgn}(x-1) \cdot \cot^{-1}(x-1) \] For \( x < 1 \), \( \text{sgn}(x-1) = -1 \): \[ \lim_{x \to 1^-} f(x) = -1 \cdot \cot^{-1}(0) = -1 \cdot \frac{\pi}{2} = -\frac{\pi}{2} \] 5. **Conclusion on Continuity**: We compare the function value and the limits: - \( f(1) = 0 \) - \( \lim_{x \to 1^+} f(x) = \frac{\pi}{2} \) - \( \lim_{x \to 1^-} f(x) = -\frac{\pi}{2} \) Since \( f(1) \), \( \lim_{x \to 1^+} f(x) \), and \( \lim_{x \to 1^-} f(x) \) are not equal, the function \( f(x) \) is discontinuous at \( x = 1 \). ### Final Answer: The function \( f(x) \) is discontinuous at \( x = 1 \).

To solve the problem, we need to analyze the function \( f(x) = \text{sgn}(x-1) \cdot \cot^{-1}(x-1) \) and determine its continuity, particularly at the point \( x = 1 \). ### Step-by-Step Solution: 1. **Understanding the Signum Function**: The signum function \( \text{sgn}(x-1) \) is defined as: - \( 1 \) if \( x > 1 \) - \( 0 \) if \( x = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The function f (x)=[sqrt(1-sqrt(1-x ^(2)))], (where [.] denotes greatest integer function):

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

The domain of real valued function f(x)=log_([x-(1)/(2)])[|x+1|] (where I.] denotes greatest integer function),is

Find the range of the following functions: f(x)=[ln(sin^(-1)sqrt(x^(2)+x+1))] [.] denotes the greatest integer function.

The function f(x)=[x]+1/2,x!inI is a/an (wher [.] denotes greatest integer function)

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. The function f(x)=sgn(x-1). Cot^(-1)[x-1] is ([x] "denotes greatest in...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |