Home
Class 12
MATHS
If xgt0, the least value of n in N such ...

If `xgt0`, the least value of `n in N` such that `((1+i)/(1-i))^(n)=(2)/(pi)sin^(-1)((1+x^(2))/(2x))` is :

A

2

B

4

C

8

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least value of \( n \in \mathbb{N} \) such that \[ \left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi} \sin^{-1}\left(\frac{1+x^2}{2x}\right) \] ### Step 1: Simplifying the Left Side First, we simplify the left side: \[ \frac{1+i}{1-i} \] To simplify this, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{1 + 2i - 1}{1 + 1} = \frac{2i}{2} = i \] Thus, we have: \[ \left(\frac{1+i}{1-i}\right)^n = i^n \] ### Step 2: Analyzing the Right Side Next, we analyze the right side: \[ \frac{2}{\pi} \sin^{-1}\left(\frac{1+x^2}{2x}\right) \] We need to find the range of the expression \( \frac{1+x^2}{2x} \). Using the AM-GM inequality: \[ \frac{1+x^2}{2} \geq \sqrt{1 \cdot x^2} = x \] Thus, \[ \frac{1+x^2}{2x} \geq 1 \] This means that \( \sin^{-1}\left(\frac{1+x^2}{2x}\right) \) will be defined for values greater than or equal to 1. The maximum value of \( \sin^{-1}(y) \) is \( \frac{\pi}{2} \) when \( y = 1 \). ### Step 3: Finding the Minimum Value The minimum value of \( \frac{2}{\pi} \sin^{-1}\left(\frac{1+x^2}{2x}\right) \) occurs when \( x \to 0 \), which gives: \[ \sin^{-1}(1) = \frac{\pi}{2} \] Thus, \[ \frac{2}{\pi} \cdot \frac{\pi}{2} = 1 \] ### Step 4: Equating Both Sides Now we equate both sides: \[ i^n = 1 \] ### Step 5: Finding the Least Value of \( n \) The powers of \( i \) are: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) The least \( n \) such that \( i^n = 1 \) is \( n = 4 \). ### Conclusion Thus, the least value of \( n \in \mathbb{N} \) such that \[ \left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi} \sin^{-1}\left(\frac{1+x^2}{2x}\right) \] is \[ \boxed{4} \]

To solve the problem, we need to find the least value of \( n \in \mathbb{N} \) such that \[ \left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi} \sin^{-1}\left(\frac{1+x^2}{2x}\right) \] ### Step 1: Simplifying the Left Side ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

The least positive integer n for which ((1+i)/(1-i))^(n)=(2)/(pi)sin^(-1)((1+x^(2))/(2x)), where x>0 and i=sqrt(-1) is

The least positive integer n for which ((1+i)/(1-i))^(n)=((2)/(pi))(sec^(-1)((1)/(x))+sin^(1)x)

The least positive integer n for which ((1+i)/(1-i))^(n)=(2)/(pi)(sec^(-1)""(1)/(x)+sin^(-1)x) (where, Xne0,-1leXle1andi=sqrt(-1), is

Write the least positive intergal value of n when ((1+i)/(1-i))^(2n) =1 .

The value of lim_(n rarr oo)sum_(i=1)^(n)(i)/(n^2)sin((pi i^(2))/(n^(2))) is equal to

The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

The value of int_(0)^(1)(Pi_(i=1)^(n)(x+i))(Sigma_(j=1)^(n)(1)/(x+j))dx is

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. If xgt0, the least value of n in N such that ((1+i)/(1-i))^(n)=(2)/(pi...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |