Home
Class 12
MATHS
Unit vectors vec(a),vec(b),vec(c ) are c...

Unit vectors `vec(a),vec(b),vec(c )` are coplanar. A unit vector `vec(d)` is perpendicular to them. If `(vec(a)xxvec(b))xx(vec(c )xxvec(d))=(1)/(6)i-(1)/(3)hat(j)+(1)/(3)hat(k)` and the angle between `vec(a)` and `vec(b)` is `30^(@)`, then `vec(c )` is/are :

A

`pm(1)/(3)(-hat(i)-2hat(j)+2hat(k))`

B

`(1)/(3)(2hat(i)+hat(j)-hat(k))`

C

`pm(1)/(3)(-hat(i)+2hat(j)-2hat(k))`

D

`(1)/(3)(-2hat(i)-2hat(j)+ hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector \(\vec{c}\) given that the unit vectors \(\vec{a}, \vec{b}, \vec{c}\) are coplanar and a unit vector \(\vec{d}\) is perpendicular to them. We also have the equation: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6} \hat{i} - \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k} \] and the angle between \(\vec{a}\) and \(\vec{b}\) is \(30^\circ\). ### Step 1: Understand the Coplanarity and Perpendicularity Since \(\vec{a}, \vec{b}, \vec{c}\) are coplanar, we can express the cross product \(\vec{a} \times \vec{b}\) as a vector that is perpendicular to the plane formed by \(\vec{a}\) and \(\vec{b}\). The vector \(\vec{d}\) is also perpendicular to this plane. ### Step 2: Calculate \(\vec{a} \times \vec{b}\) Using the formula for the magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta) \] Given that \(\vec{a}\) and \(\vec{b}\) are unit vectors and \(\theta = 30^\circ\): \[ |\vec{a} \times \vec{b}| = 1 \cdot 1 \cdot \sin(30^\circ) = \frac{1}{2} \] Thus, we can write: \[ \vec{a} \times \vec{b} = \frac{1}{2} \hat{n} \] where \(\hat{n}\) is a unit vector perpendicular to both \(\vec{a}\) and \(\vec{b}\). ### Step 3: Use the Vector Triple Product Identity We can apply the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{a} \times \vec{b}\), \(\vec{y} = \vec{c}\), and \(\vec{z} = \vec{d}\): \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{a} \times \vec{b}) \cdot \vec{d} \cdot \vec{c} - (\vec{a} \times \vec{b}) \cdot \vec{c} \cdot \vec{d} \] Since \(\vec{d}\) is perpendicular to \(\vec{a}\) and \(\vec{b}\), we have: \[ (\vec{a} \times \vec{b}) \cdot \vec{d} = 0 \] Thus, the equation simplifies to: \[ - (\vec{a} \times \vec{b}) \cdot \vec{c} \cdot \vec{d} = \frac{1}{6} \hat{i} - \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k} \] ### Step 4: Solve for \(\vec{c}\) Now we need to find \(\vec{c}\). We know: \[ (\vec{a} \times \vec{b}) \cdot \vec{c} = \frac{1}{2} \hat{n} \cdot \vec{c} \] Let \(\vec{c} = x \hat{i} + y \hat{j} + z \hat{k}\). We can express the dot product in terms of the components of \(\vec{c}\). ### Step 5: Substitute and Solve We substitute and solve the equation: \[ \frac{1}{2} (x \hat{i} + y \hat{j} + z \hat{k}) = \frac{1}{6} \hat{i} - \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k} \] This leads to a system of equations for \(x, y, z\): 1. \(\frac{1}{2} x = \frac{1}{6} \Rightarrow x = \frac{1}{3}\) 2. \(\frac{1}{2} y = -\frac{1}{3} \Rightarrow y = -\frac{2}{3}\) 3. \(\frac{1}{2} z = \frac{1}{3} \Rightarrow z = \frac{2}{3}\) Thus, we have: \[ \vec{c} = \frac{1}{3} \hat{i} - \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k} \] ### Final Answer The unit vector \(\vec{c}\) is: \[ \vec{c} = \frac{1}{3} \hat{i} - \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k} \]

To solve the problem, we need to find the unit vector \(\vec{c}\) given that the unit vectors \(\vec{a}, \vec{b}, \vec{c}\) are coplanar and a unit vector \(\vec{d}\) is perpendicular to them. We also have the equation: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6} \hat{i} - \frac{1}{3} \hat{j} + \frac{1}{3} \hat{k} \] and the angle between \(\vec{a}\) and \(\vec{b}\) is \(30^\circ\). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c be three vectors such that |vec a+vec b+vec c|=1,vec c=lambda(vec a xxvec b) and |vec a|=(1)/(sqrt(2)),|vec b|=(1)/(sqrt(3)),|vec c|=(1)/(sqrt(6)), then the angle between vec a and vec b is

vec b,vec c are unit vectors and |vec a|=7vec a xx(vec b xxvec c)+vec b xx(vec c xxvec a)=(1)/(2)vec a then the angle between vec a and vec a is

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

Find vec(a)xxvec(b) and vec(b)xxvec(a) if (i) vec(a)=3hat(k)+4hat(j), vec(b)=hat(i) +hat(j)-hat(k) vec(a)=(2, -1,1) ,vec(b)=(3,4, -1)

If vec a,vec b, and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)),vec b and vec c are non parallel,then prove that the angel between vec a and vec b is 3 pi/4

Three vectors vec a,vec b,vec c are such that vec a xxvec b=3(vec a xxvec c) Also |vec a|=|vec b|=1,|vec c|=(1)/(3) If the angle between vec b and vec c is 60^(@) then

If vec a, vec b, vec c and vec d are unit vectors such that (vec a xxvec b) * (vec c xxvec d) = 1 and vec a * vec c = (1) / (2)

If vec a,vec b and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)), then the angle between vec a and vec b is a.3 pi/4b. pi/4 c.pi/2d. pi

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. Unit vectors vec(a),vec(b),vec(c ) are coplanar. A unit vector vec(d) ...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |