Home
Class 12
MATHS
Lat l(1)=int(0)^(3)(sinx)/([(x)/(pi)]+(1...

Lat `l_(1)=int_(0)^(3)(sinx)/([(x)/(pi)]+(1)/(2))dx` and `l_(2)=int_(-3)^(0)(sinx)/([(x)/(pi)]+(1)/(2))dx`, then (where`[.]` represent G.l.F.)

A

`l_(2)+l_(2)=0`

B

`l_(1)=l_(2)`

C

`l _(1)=3l_(2)`

D

`l_(2)=3l_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( l_1 \) and \( l_2 \) defined as follows: \[ l_1 = \int_{0}^{3} \frac{\sin x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} \, dx \] \[ l_2 = \int_{-3}^{0} \frac{\sin x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} \, dx \] where \([\cdot]\) represents the greatest integer function (G.I.F.). ### Step 1: Analyze \( l_1 \) For \( l_1 \), we need to determine the value of \(\left[\frac{x}{\pi}\right]\) for \( x \) in the interval \([0, 3]\). - When \( x = 0 \): \(\left[\frac{0}{\pi}\right] = 0\) - When \( x = 3 \): \(\left[\frac{3}{\pi}\right] \approx \left[\frac{3}{3.14}\right] \approx 0.955\) which rounds down to \(0\). Now we can evaluate the intervals: - For \( x \in [0, 3] \), \(\left[\frac{x}{\pi}\right] = 0\). Thus, we can simplify \( l_1 \): \[ l_1 = \int_{0}^{3} \frac{\sin x}{0 + \frac{1}{2}} \, dx = \int_{0}^{3} 2 \sin x \, dx \] ### Step 2: Evaluate the integral for \( l_1 \) Now we compute: \[ l_1 = 2 \int_{0}^{3} \sin x \, dx \] The integral of \(\sin x\) is: \[ \int \sin x \, dx = -\cos x \] Thus, \[ \int_{0}^{3} \sin x \, dx = [-\cos x]_{0}^{3} = -\cos(3) + \cos(0) = 1 - \cos(3) \] So, \[ l_1 = 2(1 - \cos(3)) \] ### Step 3: Analyze \( l_2 \) Now, we analyze \( l_2 \): For \( l_2 \), we need to determine the value of \(\left[\frac{x}{\pi}\right]\) for \( x \) in the interval \([-3, 0]\). - When \( x = -3 \): \(\left[\frac{-3}{\pi}\right] \approx \left[\frac{-3}{3.14}\right] \approx -1\) - When \( x = 0 \): \(\left[\frac{0}{\pi}\right] = 0\) Now we can evaluate the intervals: - For \( x \in [-3, 0)\), \(\left[\frac{x}{\pi}\right] = -1\). Thus, we can simplify \( l_2 \): \[ l_2 = \int_{-3}^{0} \frac{\sin x}{-1 + \frac{1}{2}} \, dx = \int_{-3}^{0} \frac{\sin x}{-\frac{1}{2}} \, dx = -2 \int_{-3}^{0} \sin x \, dx \] ### Step 4: Evaluate the integral for \( l_2 \) Now we compute: \[ l_2 = -2 \int_{-3}^{0} \sin x \, dx \] Using the same integral result as before: \[ \int_{-3}^{0} \sin x \, dx = [-\cos x]_{-3}^{0} = -\cos(0) + \cos(-3) = -1 + \cos(3) \] So, \[ l_2 = -2(-1 + \cos(3)) = 2(1 - \cos(3)) \] ### Step 5: Compare \( l_1 \) and \( l_2 \) Now we have: \[ l_1 = 2(1 - \cos(3)) \] \[ l_2 = 2(1 - \cos(3)) \] Thus, we conclude that: \[ l_1 = l_2 \] ### Final Answer Therefore, the relation between \( l_1 \) and \( l_2 \) is: \[ l_1 = l_2 \]

To solve the problem, we need to evaluate the integrals \( l_1 \) and \( l_2 \) defined as follows: \[ l_1 = \int_{0}^{3} \frac{\sin x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} \, dx \] \[ l_2 = \int_{-3}^{0} \frac{\sin x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} \, dx ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

l_(1)=int_(0)^(1)(1+x^(8))/(1+x^(4))dx and l_(2)=int_(0)^(1)(1+x^(9))/(1+x^(3))dx

int_(0)^(pi)(dx)/((1+sinx))=?

int_(0)^(pi)(x)/(1+sinx)dx .

If l_(1)=int_(0)^(1)(dx)/(sqrt(1+x^(2))) and I_(2)=int_(0)^(1)(dx)/(|x|) then

int_(0)^(pi//2)(sinx)/((1+cos^(2)x))dx

int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

I_(1) = int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx, I_(2) = int_(0)^(pi)(x^(2)sinx)/((pi^(2)-3pix+3x^(2))(1+cos^(2)x))dx , then

If l_(1)=int_(0)^(npi)f(|cosx|)dx and l_(2)=int_(0)^(5pi)f(|cosx|)dx , then

int_(0)^(pi//2)sqrt(1+sinx)dx

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. Lat l(1)=int(0)^(3)(sinx)/([(x)/(pi)]+(1)/(2))dx and l(2)=int(-3)^(0)(...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |