Home
Class 12
MATHS
If A(n) represent the area bounded by th...

If `A(n)` represent the area bounded by the curve `y=n " lnx " ("where "n in N" and " n gt1)` and x-axis from `x=1` to `x=e`, then value of `A(n)+nA(n-1)` is equal to

A

`n^(2)`

B

`en^(2)`

C

`n^(2)/(e+1)`

D

`n^(2)/(e-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( A(n) + nA(n-1) \), we first need to compute \( A(n) \) and \( A(n-1) \). ### Step 1: Calculate \( A(n) \) The area \( A(n) \) is given by the integral of the function \( y = n \ln x \) from \( x = 1 \) to \( x = e \). \[ A(n) = \int_{1}^{e} n \ln x \, dx \] Since \( n \) is a constant, we can factor it out of the integral: \[ A(n) = n \int_{1}^{e} \ln x \, dx \] ### Step 2: Evaluate the integral \( \int \ln x \, dx \) To evaluate \( \int \ln x \, dx \), we can use integration by parts. Let: - \( u = \ln x \) → \( du = \frac{1}{x} \, dx \) - \( dv = dx \) → \( v = x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Substituting the values: \[ \int \ln x \, dx = x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - x + C \] ### Step 3: Evaluate the definite integral Now we evaluate \( \int_{1}^{e} \ln x \, dx \): \[ \int_{1}^{e} \ln x \, dx = \left[ x \ln x - x \right]_{1}^{e} \] Calculating the limits: 1. At \( x = e \): \[ e \ln e - e = e \cdot 1 - e = e - e = 0 \] 2. At \( x = 1 \): \[ 1 \ln 1 - 1 = 1 \cdot 0 - 1 = -1 \] Thus, \[ \int_{1}^{e} \ln x \, dx = 0 - (-1) = 1 \] ### Step 4: Substitute back to find \( A(n) \) Now substituting back into our expression for \( A(n) \): \[ A(n) = n \cdot 1 = n \] ### Step 5: Calculate \( A(n-1) \) Using the same process for \( A(n-1) \): \[ A(n-1) = \int_{1}^{e} (n-1) \ln x \, dx = (n-1) \int_{1}^{e} \ln x \, dx = (n-1) \cdot 1 = n - 1 \] ### Step 6: Calculate \( A(n) + nA(n-1) \) Now we can find \( A(n) + nA(n-1) \): \[ A(n) + nA(n-1) = n + n(n-1) \] Expanding this: \[ = n + n^2 - n = n^2 \] ### Final Result Thus, the value of \( A(n) + nA(n-1) \) is: \[ \boxed{n^2} \]

To find the value of \( A(n) + nA(n-1) \), we first need to compute \( A(n) \) and \( A(n-1) \). ### Step 1: Calculate \( A(n) \) The area \( A(n) \) is given by the integral of the function \( y = n \ln x \) from \( x = 1 \) to \( x = e \). \[ A(n) = \int_{1}^{e} n \ln x \, dx ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If A(n) represents the area bounded by the curve y=n*ln x, where n in N and n>1 the x-axis and the lines x=1 and x=e , then the value of A(n)+nA(n-1) is equal to a.(n^(2))/(e+1) b.(n^(2))/(e-1) c.n^(2) d.en ^(2)

If A_(n) is the area bounded by y=(1-x^(2))^(n) and coordinate axes,n in N, then

If A_(n) is the area bounded by y=x and y=x^(n), n in N, then A_(2).A_(3)…A_(n)=

If the area bounded by the curve y=cos^-1(cosx) and y=|x-pi| is pi^2/n , then n is equal to…

Evaluate : { ( x^n )^(n-1 ) }^(1/( n(n-1 )) is equal to

Let A_(n) be the area bounded by the curve y=x^(n)(n>=1) and the line x=0,y=0 and x=(1)/(2). If sum_(n=1)^(n)(2^(n)A_(n))/(n)=(1)/(3) then find the value of n .

Find the area in the 1* quadrant bounded by [x]+[y]=n, where n in N and y=k(where k in n AA k<=n+1), where [.] denotes the greatest integer less than or equal to x.

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. If A(n) represent the area bounded by the curve y=n " lnx " ("where "...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |