Home
Class 12
MATHS
If z=re^(itheta), then |e^(iz)| is equ...

If `z=re^(itheta)`, then `|e^(iz)|` is equal to

A

`e^(-rcostheta)`

B

`e^(rcostheta)`

C

`e^(rsintheta)`

D

`e^(-rsintheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |e^{iz}| \) given that \( z = re^{i\theta} \). ### Step-by-Step Solution: 1. **Substitute for \( z \)**: We start with the expression for \( z \): \[ z = re^{i\theta} \] Now, we need to find \( e^{iz} \): \[ e^{iz} = e^{i(re^{i\theta})} \] 2. **Express \( e^{iz} \)**: We can simplify \( e^{iz} \): \[ e^{iz} = e^{i(r(\cos \theta + i \sin \theta))} = e^{i(r \cos \theta + ir \sin \theta)} = e^{-r \sin \theta} e^{i r \cos \theta} \] Here, we used the property \( e^{a + b} = e^a e^b \). 3. **Find the modulus**: Now, we need to find the modulus of \( e^{iz} \): \[ |e^{iz}| = |e^{-r \sin \theta} e^{i r \cos \theta}| \] Using the property of modulus that states \( |ab| = |a||b| \): \[ |e^{iz}| = |e^{-r \sin \theta}| \cdot |e^{i r \cos \theta}| \] 4. **Calculate each modulus**: - The modulus of \( e^{-r \sin \theta} \) is simply \( e^{-r \sin \theta} \) since it is a real number. - The modulus of \( e^{i r \cos \theta} \) is \( 1 \) because the modulus of any complex exponential \( e^{i\phi} \) is \( 1 \). 5. **Combine the results**: Therefore, we have: \[ |e^{iz}| = e^{-r \sin \theta} \cdot 1 = e^{-r \sin \theta} \] ### Final Result: Thus, the value of \( |e^{iz}| \) is: \[ \boxed{e^{-r \sin \theta}} \]

To solve the problem, we need to find the value of \( |e^{iz}| \) given that \( z = re^{i\theta} \). ### Step-by-Step Solution: 1. **Substitute for \( z \)**: We start with the expression for \( z \): \[ z = re^{i\theta} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If z= 5e^(itheta), then |e^(iz)| is equal to

If z=re^(i)theta then |e^(iz)| is equal to:

If z=6e^(i(pi)/(3)) then |e^(iz)=1

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

Read the following writeup carefully: In argand plane |z| represent the distance of a point z from the origin. In general |z_1-z_2| represent the distance between two points z_1 and z_2 . Also for a general moving point z in argand plane, if arg(z) =theta , then z=|z|e^(itheta) , where e^(itheta) = cos theta + i sintheta . Now answer the following question If |z-(3+2i)|=|z cos ((pi)/(4) - "arg" z)|, then locus of z is

If conjugate of a complex number z is (2+5i)/(4-3i) , then |Re(z) + Im(z)| is equal to ____________

Let z be a complex number of maximum amplitude satisfying |z-3|=Re(z), then |z-3| is equal to

If z_(1),z_(2) are complex number such that Re(z_(1) ) = |z_(1) - 1| , Re(z_(2)) = |z_(2) -1| and arg(z_(1) - z_(2)) = (pi)/(3) , then Im (z_(1) + z_(2)) is equal to

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. If z=re^(itheta), then |e^(iz)| is equal to

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |